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About the E&P Sound & Marine Life Programme
The ocean is filled with a wide variety of natural and man-made sounds. 
Since the [early 1990s], there has been increasing environmental and 
regulatory focus on man-made sounds in the sea and on the effects 
these sounds may have on marine life. There are now many national 
and international regimes that regulate how we introduce sound to the 
marine environment. We believe that effective policies and regulations 
should be firmly rooted in sound independent science. This allows 
regulators to make consistent and reasonable regulations while also 
allowing industries that use or introduce sound to develop effective 
mitigation strategies.

In 2005, a broad group of international oil and gas companies and the 
International Association of Geophysical Contractors (IAGC) committed to 
form a Joint Industry Programme under the auspices of the International 
Association of Oil and Gas Producers (IOGP) to identify and conduct a 
research programme that improves understanding of the potential impact 
of exploration and production sound on marine life. The Objectives of the 
programme were (and remain):

1.	 To support planning of E&P operations and risk assessments

2.	 To provide the basis for appropriate operational measures that are 
protective of marine life

3.	 To inform policy and regulation.

The members of the JIP are committed to ensuring that wherever 
possible the results of the studies it commissions are submitted for 
scrutiny through publication in peer-reviewed journals. The research 
papers are drawn from data and information in the contract research 
report series. Both Contract reports and research paper abstracts (and in 
many cases full papers) are available from the Programme’s web site at 
www.soundandmarinelife.org.

Disclaimer:
This publication, one of a series of reports on ‘standard approaches’ to measuring, assuring quality of and reporting of acoustic properties, 
is an output from the IOGP Joint Industry Programme on E&P Sound and Marine Life (“the JIP”). It is intended that any single report in this 
series is taken in conjunction with the others in the series. Whilst every effort has been made to ensure the accuracy of the information 
contained in this publication, neither IOGP nor any of participants in the JIP past, present or future, nor the Contractor appointed to prepare 
this study warrants its accuracy or will, regardless of its or their negligence, assume liability for any foreseeable use made thereof, whether 
in whole or in part, which liability is hereby excluded. Consequently such use is at the recipient’s own risk on the basis that any use by the 
recipient constitutes agreement to the terms of this disclaimer. The recipient is obliged to inform any subsequent recipient of such terms.
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 1 Symbols and abbreviations 

 

Abbreviation Stands for 

ADC analogue to digital converter 

BESD band-averaged energy spectral density 

BPSD band-averaged power spectral density 

CSA Continental Shelf Associates, Inc. 

DIS Draft International Standard 

E&P exploration and production 

FESD Fourier energy spectral density 

FPSD Fourier power spectral density 

HF high-frequency cetaceans 

IEC International Electrotechnical Commission 

ISO International Organization for Standardization 

JIP E&P Sound and Marine Life Joint Industry Programme 

LF low-frequency cetaceans 

MF mid-frequency cetaceans 

NMFS US National Marine Fisheries Service 

NOAA US National Oceanic and Atmospheric Administration 

PK peak sound pressure level 

PW pinnipeds in water 

OP otariid pinnipeds (in water) 

PP phocid pinnipeds (in water) 

SEL sound exposure level 

SELcum cumulative sound exposure level 

SPL sound pressure level 

TNO 

 

Nederlandse Organisatie voor Toegepast 

Natuurwetenschappelijk Onderzoek (Netherlands Organisation 

for Applied Scientific Research) 

UA-P E&P Sound and Marine Life JIP Standard: Underwater Acoustics 

– Processing (this report) 

WBESD weighted band-averaged energy spectral density 

WFESD weighted Fourier energy spectral density 
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Symbol represents 

unit symbols  

ddec decidecade 

dec decade 

oct octave 

  

quantity symbols  

𝐸 time-integrated sound field quantity 𝑥 

𝐸𝑓 spectral density of 𝐸 

𝐹 time-integrated sound field quantity 𝑦 

𝐹𝑓 spectral density of 𝐹 

𝑓𝑚 discrete frequency 

𝐽 impulse 

𝑃 mean-square value of field quantity 𝑥  

𝑄 mean-square value of field quantity 𝑦  

𝑄𝑓 spectral density of 𝑄 

𝑡 continuous time 

𝑇 continuous time relative to start of time window Δ𝑡 

𝑡𝑛 discrete time 

𝑋(𝑡) original field quantity 

𝑥(𝑡) field quantity in frequency Δ𝑓 and time window Δ𝑡 

𝑥𝑛 discrete representation of 𝑥(𝑡) 

𝑦(𝑡) piecewise constant representation of 𝑥(𝑡) 

Δ𝑓 width of frequency band 

Δ𝑡 duration of time window 

𝜏 duration of transient 𝑥(𝑡) 

𝜐 duration of transient 𝑦(𝑡) 
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 2 Introduction 

This document is a deliverable of the project ‘Standard Procedures for Underwater 

Noise Measurements for Activities Related to Offshore Oil and Gas Exploration and 

Production. Phase I: Processing and Reporting Procedures’ carried out by TNO, in 

collaboration with CSA and Bioacoustics Consulting, for the Sound and Marine Life 

Joint Industry Programme (JIP). The objectives of this project are (TNO, 2015): 

1) to ensure that the analysis ('acoustical processing') of selected acoustic metrics 

such as level, duration, and frequency content, used to describe the 

characteristics of a sound signal propagating in water, can be performed in a 

consistent and systematic manner; 

2) to ensure that the results of such acoustical processing can be reported in such 

a way that the results reported from two or more studies can be appropriately 

compared; 

3) to define the correspondence between the acoustic metrics to be reported and 

metrics used in selected previous scientific publications. 

The term “acoustical processing” is used here to mean the conversion from time 

series (e.g., sound pressure vs. time) to processed metrics such as sound pressure 

level or sound exposure level. This processing is required to provide metrics that 

are consistent with one another and with the definitions of ISO 18405:2017 (ISO, 

2017), and thus facilitate like with like comparison. 

The purpose of the project is to standardize the processing and reporting of 

physical metrics needed by bio-acousticians for assessing the impact of underwater 

sound on marine life.  Standardization of biological studies is outside the project 

scope. 

This document is a standard for processing measurements of underwater sound. It 

is referred to henceforth as the ‘E&P Sound and Marine Life JIP Standard: 

Underwater Acoustics – Processing (abbreviated UA-P).  

In addition to the present data processing standard (UA-P), JIP standards for 

terminology (Ainslie et al., 2018) and reporting (Ainslie and de Jong, 2018) are also 

available.  If Phase II of the project is carried out, this will result in the development 

of JIP standards for measurements of underwater sound.  

2.1 Discussion of acoustical processing 

The procedure to produce a processed metric begins with an observable ‘field 

quantity’ which changes with time and is denoted 𝑋(𝑡). The variable 𝑋 may be 

sound pressure or a directional component of sound particle displacement, particle 

velocity or particle acceleration. Practical measurements of 𝑋 require a sensor 

capable of converting 𝑋 into a signal that may subsequently be digitized to produce 

a numerical measure as a function of time. In the case of acoustic pressure, a 

piezoelectric crystal converts sound pressure to an electrical voltage that is passed 

through an analogue-to-digital converter (ADC). If the receiver is fully calibrated 

(i.e., its sensitivity is known precisely), this voltage can be converted back to the 

value of the sound pressure that caused it, sampled at discrete times, at a rate 

determined by the characteristics of the ADC. This discretely sampled sound 
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 pressure is represented by 𝑋𝑛 – a discrete representation of 𝑋(𝑡) where 𝑛 denotes 

the number of the sample. In order to do this correctly, 𝑋(𝑡) is filtered to remove 

contributions from high frequency sound that the ADC is not able to sample 

correctly. More specifically, the filter must remove variations in 𝑋(𝑡) that occur at 

frequencies greater than 1/(2𝑡) where 𝑡 is the time spacing between samples in 

𝑋𝑛. If this is not done, the sample is said to be ‘aliased’ and 𝑋𝑛 does not provide a 

true digitized representation of 𝑋(𝑡). It is common for measuring devices to be 

calibrated only down to a lower frequency limit below which their output can no 

longer be related to the field quantity of interest. High-pass filters are used to 

remove signal components below this lower limit and 𝑋𝑛 is consequently associated 

with a frequency band bounded by the lower limit of calibration and the anti-aliasing 

filter at the upper end. Furthermore, amplifier gains in the recording circuitry must 

be set so that the input to the ADC never exceeds the value that results in the 

maximum possible output, set by the number of bits of the ADC. If this maximum is 

exceeded, the ADC output is ‘clipped’ and 𝑋𝑛 is no longer a true digitized 

representation of 𝑋(𝑡). We have used sound pressure as an example, but for the 

remainder of this report 𝑋(𝑡) is used to represent the instantaneous value of any 

time-varying field quantity.   

 

It is assumed throughout that a digitized and calibrated signal 𝑋𝑛 is available in a 

known frequency band encompassing all sub-bands of interest, and is free from 

aliasing and clipping. As such, 𝑋𝑛 has an implicit frequency window and dynamic 

range.  

 

Given the input 𝑋𝑛, two steps must be followed to produce the processed metrics. 

First, a suitable time window must be selected. This window is a characteristic time 

over which all metrics are inherently averaged. The data within a time window are 

nominally copies of values of 𝑋𝑛, with tapering typically applied close to the edge of 

the window to avoid step changes. Sometimes zeros are used to ‘pad’ the 

beginning and end of the window to obtain a convenient number of sample points. 

Scaling and padding are necessary for the production of processing metrics that 

involve the use of Fourier transforms while they are not needed for metrics that can 

be derived more directly from 𝑋𝑛.  

 

In underwater acoustics there is often interest in detecting an acoustic signal in a 

background of noise. Some of the metrics described in this report distinguish 

between those describing the signal and those describing the noise. Where 

relevant, it is assumed in this report that this distinction has been made by 

identifying time series that are dominated by the signal or contain only noise.   

In reality the signal always contains some noise, and strictly speaking a property of 

the signal is implicitly that of signal plus noise, combined. 

2.2 Issues related to measurements  

Some details of data acquisition and filtering such as the specifications for anti-alias 

filter and sampling rate, or the characteristics of frequency and time windows, 

including tapering and zero padding, are more appropriate for a measurement 

standard than a data processing standard and are thus outside the present scope. 
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 2.3 Assumptions 

This report makes the following assumptions: 

a) Discrete time series of sound pressure or sound particle velocity (or other 

suitable characteristic of particle motion) are available as input to the data 

processing procedure; 

b) these discrete time series are sampled uniformly in time (i.e., for any one time 

series, the time interval between samples is identical throughout, with no gaps, and 

no corrupted samples); 

c) these discrete time series are calibrated, unsaturated, and filtered for a specified 

frequency band encompassing all sub-bands of interest 

d) these discrete time series are sampled at a rate that comfortable exceeds the 

Nyquist rate of the continuous signal before digitization (i.e., they are free of aliasing 

artefacts); 

2.4 Outline of this report 

Section 3 discusses issues related to the selection of time windows while Section 4 

describes processing to produce metrics that do not require the use of a Fourier 

transform. Section 5 describes processing to produce metrics that require a Fourier 

transform. Section 6 provides recipes for quantities of interest, including quantities 

based on sound pressure and on particle motion, as well as levels of both.  

2.5 Use of this report 

This report is intended to be used as follows. Metrics that might potentially be 

calculated are listed in a series of tables in Sec. 6. For each metric of interest, the 

table contains a pointer to the section in the report describing the processing 

required to obtain the metric, always using the ‘discrete representation’ of the metric 

in question.  

 

For each discrete representation there is also a description of the ‘continuum 

representation’ from which the discrete representation is derived. The continuum 

representation is not an essential part of the recipe and may be ignored without any 

loss of rigour or precision. The continuum representation is included in the report 

primarily for those readers wishing to understand the origin of the discrete 

processing. 
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 3 Selection of frequency and time windows 

Prior to detailed calculation of metrics it is necessary to select a frequency sub-

band (from 𝑓min to 𝑓max, bandwith Δ𝑓 = 𝑓max − 𝑓min) and time window (Δ𝑡) of interest. 

Procedures for selecting these quantities follow. 

3.1 Selection of sub-band frequency window 

A widespread choice of sub-band frequency window is based on one-third octave 

frequency bands. The international processing standard for one-third octave 

processing bands is Part 1 of IEC 61260-1:2014 (IEC, 2014); where one-third 

octave processing is applied, the processing bands prescribed by this IEC standard 

shall be followed.  Frequency bands from IEC (2014) with centre frequencies 

between 25 Hz and 20 kHz are listed in Table 1. A more complete set of centre 

frequencies and band-edge frequencies is provided in Table 13 of Ainslie and de 

Jong (2018). 

Table 1  Mid-band frequencies for filters of bandwidth one tenth of a decade (often referred to 

as “one-third-octave-band” filters) and three tenths of a decade (“octave-band filters”). 

From IEC (2014).   
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 The terms “octave-band” and “one-third-octave-band” are used to indicate 

frequency bands that are approximately one octave and one third of an octave 

wide. The precise bandwidths of these bands are three tenths of a decade and one 

tenth of a decade, respectively (IEC, 2014). This apparent discrepancy arises 

because of a clash between the JIP terminology standard (Ainslie et al. (2018), 

following ISO (2017)), which defines an octave ratio as a factor of 2 in frequency 

and the terminology of IEC (2014), which defines an octave ratio as a factor 100.3 ≈

1.9953 in frequency (see Table 2). The difference in frequency ratio is small, but it 

can lead to unexpected differences between two nominally identical metrics if one is 

calculated using the ISO convention for defining “octave” and the other with the IEC 

convention. 

Table 2  Frequency ratios, their relative values, and terminology used to describe them.  

Term (Ainslie et 

al., 2018) 

Definition  Value to 5 

sig. figs.  

(* indicates 

exact value) 

Notes  

decade 

 

symbol: dec 

decade  1 dec* 

 

= 3.3219 oct 

n/a 

octave 

 

symbol: oct 

 

octave  0.30103 dec 

 

= 1 oct* 

IEC (2014) defines the 

term “octave” to mean 

three tenths of a decade  

(0.3 dec = 0.99658 oct) 

one-third octave 

 

synonym: one-

third octave 

(base 2) 

one third of 

an octave  

0.10034 dec 

 

= 0.33333 oct 

 

n/a 

decidecade 

 

synonym: one-

third octave 

(base 10) 

symbol: ddec 

one tenth of 

a decade  

0.1 dec* 

 

= 0.33219 oct 

IEC (2014) defines the 

term “one-third-octave” to 

mean one tenth of a 

decade 

In the remainder of this document, it is assumed that the field quantity 𝑋(𝑡) is 

processed into sub-bands of interest. 

3.2 Selection of time window 

The calculation of any metric requires as input a number of values of the discretely 

sampled field quantity 𝜉𝑛. These values may cover the whole extent of 𝜉𝑛 but it is 

more common that 𝜉𝑛 is divided into subsets. The selection of these subsets is 

equivalent to the selection of a time window Δ𝑡 for the calculation of the metric.  

The size of the time window may be specified in absolute terms (e.g., a specific 

number of seconds) or by the properties of the data (e.g., a time containing a 

proportion of the total energy). The choice of a time window being set to a time 

containing a certain proportion of energy is commonly used for transient signals.  
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 If the metric is to be calculated by a process that includes a Fourier transform, then 

there are consequences for the selection of a suitable time window. Many numerical 

implementations of the Fourier transform require the input signal to have a number 

of samples that is an integer power of 2. An initial estimate of the time window, ∆𝑡′, 

based on a particular time period in seconds or on the properties of the data, may 

not result in a number of samples equal to 2M where M is an integer. In this case, ∆𝑡 

must be adjusted such that  

∆𝑡 = 𝛿𝑡 2ceil[log2(∆𝑡′/𝛿𝑡)] 

where ceil[𝑥] denotes the value of 𝑥 rounded up to the next integer. When this is 

done, the discrete time-series used to calculate the metric may be made from the 

subset of 𝜉𝑛 within time period ∆𝑡′, placed in the centre of the ∆𝑡 window and with 

zeros padding the start and end of the window.. When preparing data of this type 

for input to Fourier transforms, it is usual to ‘taper’ the data by a ‘window’ function 

that avoids ‘edge effects’ by reducing the amplitude of data at the beginning and 

end of the window. Many different types of window are available, e.g., Hann, 

Hamming, Tukey, Nutall (Harris, 1978; Heinzel et al., 2002), each with its strengths 

and weaknesses.  If no Fourier transform is required in the calculation of the metric, 

the value of 𝛥𝑡 used need not be an integer power of 2 and zero padding and 

windowing are not required. Nevertheless, zero padding can also be used to 

increase the frequency solution of a Fourier transform by extending the apparent 

duration of a transient sound. The type and characteristics of the window used and 

any use of zero-padding should be stated. 

When a suitable value of ∆𝑡 has been chosen it can be used to produce a new 

representation of the field parameter: 𝑥𝑛. This is the time-windowed version of 𝜉𝑛, 

including any zero-padding or tapering. 

3.3 Continuous representation of discretely sampled data  

While 𝑥𝑛 represents the input data for the calculation of metrics, many of those 

metrics are defined in terms of continuous functions of time, rather than a series of 

discrete values. For example, time-integrated measures of total signal energy 

involve integrals over time and are defined in these terms. To help in the derivation 

of these metrics, as applied to 𝑥𝑛, two alternative representations of the input data 

can be introduced. 

A continuous version of 𝑥𝑛 may be introduced and denoted 𝑥(𝑡). This includes any 

zero-padding and tapering used in the production of 𝑥𝑛 but has values for all 𝑡, 

including values that are not equal to integer multiples of 𝑡. Between these integer 

values, 𝑥(𝑡) varies smoothly between 𝑥𝑖  and 𝑥𝑖+1 but it need not necessarily remain 

within the bounds set by 𝑥𝑖  and 𝑥𝑖+1. The function 𝑥(𝑡) can be thought of as the 

continuous function reconstructed from 𝑥𝑛 using the same frequency spectrum as 

that determined from 𝑥𝑛 but calculated for a continuum of times.  

The integral over time of 𝑥(𝑡) is not equal to the sum over all 𝑥𝑛 multiplied by 𝑡. 

Since many metrics use integrals, a second continuous function is now introduced, 

𝑦(𝑡). This, like 𝑥(𝑡), is continuous in time but its values are restricted to be 

members of the set of values contained in 𝑥𝑛. At time 𝑡, 𝑦(𝑡) has a value equal to 

the 𝑥𝑛 at the nearest value of 𝑡𝑛. The function 𝑦(𝑡) is therefore a step-wise 

‘Manhattan skyline’ piecewise constant representation of 𝑥𝑛 such that its integral 
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 over time is identically equal to the sum over 𝑛 of 𝑥𝑛 multiplied by δ𝑡. The situation 

is shown in Figure 1. 

 

 

Figure 1 Representation of the digitized signal 𝑥𝑛, with time spacing 𝑡 tapered and existing 

within the time window Δ𝑡. Also shown are continuous representations 𝑥(𝑡) (which has 

the same Fourier components) and 𝑦(𝑡) (which has approximately the same area 

under the curve). 

The variable 𝑦(𝑡) is not intended to correspond to any real signal. It is introduced to 

facilitate the link between the digital data 𝑥𝑛 and integral representations of metrics 

described in the following sections. The main purpose of introducing 𝑦(𝑡) is to help 

understand the nature of the approximations made by approximating the integral 

over a continuous function with the corresponding sum over a discretely sampled 

version of that function.  By contrast, 𝑥(𝑡) is intended to reproduce the original 

signal 𝜉(𝑡) in the frequency band and time window of interest. 
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 4 Metrics not requiring a Fourier transform 

The purpose of this section is to specify the calculation of various statistics or 

metrics from a continuous function of time, 𝑥(𝑡), sampled at uniform time 

intervals δ𝑡 from 𝑡1 to 𝑡𝑁 such that 

𝑡𝑛 = 𝑡1 + (𝑛 − 1)δ𝑡;   𝑛 = 1,2, … 𝑁. 

The metrics considered in this section are those not requiring a Fourier transform 

for their evaluation, and for such metrics it is useful to approximate the original 

continuous function 𝑥(𝑡) by the piecewise constant function 𝑦(𝑡): 

𝑦(𝑡) = 𝑥(𝑡𝑛); 𝑡𝑛 −
1

2
δ𝑡 < 𝑡 ≤ 𝑡𝑛 +

1

2
δ𝑡. 

This piecewise constant representation of 𝑥(𝑡) enables one to replace an integral 

over continuous time by a sum over discrete time, with no further approximation. 

 

We refer to the set of discrete 𝑥𝑛, 𝑡𝑛 pairs, where 𝑥𝑛 ≡ 𝑥(𝑡𝑛), as the “discrete 

representation” of 𝑥(𝑡). 

 

The continuous function 𝑥(𝑡) has duration Δ𝑡 and is defined between 𝑡start = 𝑡1 −
1

2
𝛿𝑡 and 𝑡end = 𝑡𝑁 + 1

2
𝛿𝑡. Without loss of generality we set the time origin to coincide 

with 𝑡start such that the continuous function is defined between 0 and Δ𝑡.  

It is assumed that 𝑥(𝑡) is a field quantity (ISO, 2006), such as sound pressure.  For 

particle motion the field quantity can also be a component of the sound particle 

displacement, sound particle velocity, sound particle displacement, or any higher 

time derivative of the sound particle displacement, all of which are vector quantities; 

for some metrics the field quantity can be the magnitude of the vector. The field 

quantity 𝑥(𝑡) exists within a frequency band Δ𝑓 and has a duration 𝛥𝑡. 

4.1 Time-integrated squared field quantity 

4.1.1 Continuum representation 

The time-integrated squared field quantity is defined in terms of the continuous 

function 𝑥(𝑡) as  

𝐸(Δ𝑡) ≡ ∫ 𝑥2

Δ𝑡

0

d𝑡. 

For example, if the field quantity 𝑥(𝑡) is the sound pressure, 𝐸 is the time-integrated 

squared sound pressure, or sound pressure exposure. 

If 𝑥(𝑡) is the magnitude of the sound particle displacement, 𝐸 is the time-integrated 

squared sound particle displacement (here referred to as ‘sound particle 

displacement exposure’). 

If 𝑥(𝑡) is the magnitude of the sound particle velocity, 𝐸 is the time-integrated 

squared sound particle velocity (here referred to as ‘sound particle velocity 

exposure’). 
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 If 𝑥(𝑡) is the magnitude of the sound particle acceleration, 𝐸 is the time-integrated 

squared sound particle acceleration (here referred to as ‘sound particle acceleration 

exposure’). 

4.1.2 Discrete representation 

In the discrete representation, the time-integrated squared field quantity is  

𝐸 ≈ 𝐹(Δ𝑡) ≡ ∫ 𝑦2

Δ𝑡

0

d𝑡 = ∑ 𝑥𝑛
2δ𝑡

𝑁

𝑛=1
 

4.2 Peak field quantity 

4.2.1 Continuum representation 

The peak value of the field quantity is defined as the largest value of its magnitude 

𝑥0-pk ≡ max(|𝑥(𝑡)|);  0 < 𝑡 < Δ𝑡. 

4.2.2 Discrete representation 

 

Similarly, for the discrete representation 

𝑦0-pk ≡ max(|𝑦(𝑡)|);  0 < 𝑡 < Δ𝑡 

and therefore 

𝑥0-pk ≈ 𝑦0-pk = max(|𝑥𝑛|). 

4.3 Transient duration 

4.3.1 Continuum representation 

ISO (2017) defines three different measures of the duration of an acoustic pulse or 

transient. These are 2.5.1.3 effective signal duration, 2.5.1.4 threshold exceedance 

signal duration, and 2.5.1.5 percentage energy signal duration.  

Of these, the measure of most relevance to this document is 2.5.1.5 percentage 

energy signal duration, defined as the time during which a specified percentage x of 

time-integrated squared sound pressure occurs. In the following we adopt the 

choice 𝑥 = 90, consistent with the requirement of NMFS (2016). The resulting 90 % 

energy duration, generalized to include particle motion, is referred to henceforth as 

the “transient duration”. 

The duration of a transient signal is defined as the time during which 90 % of its 

“energy” is contained. The “energy” is not the true sound energy but the time-

integrated squared field quantity, abbreviated henceforth as “sound exposure”.  

More specifically, the 90 % transient signal duration 𝜏90% is the time between 𝑇5% 

and 𝑇95% 

𝜏90%  = 𝑇95% − 𝑇5%, 



 

 

TNO report | TNO 2017 R10022  14 / 39  

 where 𝑇5% and 𝑇95% are the times at which 5 % and 95 % of the total sound 

exposure (𝐸tot) is reached, such that if 

𝐸(𝑇) = ∫ 𝑥(𝑡)2

𝑇

0

d𝑡;   0 < 𝑇 < Δ𝑡, 

then 

𝐸(𝑇5%) = 0.05𝐸(Δ𝑇) = ∫ 𝑥(𝑡)2

𝑇5%

0

d𝑡 

and 

𝐸(𝑇95%) = 0.95𝐸(Δ𝑇) = ∫ 𝑥(𝑡)2

𝑇95%

0

d𝑡. 

 

More formally,  

𝑇5% = 𝐸−1(0.05𝐸(Δ𝑡)) 

and 

𝑇95% = 𝐸−1(0.95𝐸(Δ𝑡)). 

If the field quantity 𝑥(𝑡) is the sound pressure, this recipe gives 90 % energy 

duration as per entry 2.5.1.5 of ISO (2017) (percentage energy signal duration).  

4.3.2 Discrete representation 

In the discrete representation, the 90 % energy duration 𝜐90% is the time between 

𝑇5% and 𝑇95% 

𝜐90%  = 𝑇95% − 𝑇5%, 

where 𝑈5% and 𝑈95% are the times at which 5 % and 95 % of the cumulative sound 

exposure is reached. If 𝐹 passes through 5 % of total exposure during the time step 

from 𝑡𝑛5 − 1

2
𝛿𝑡 to 𝑡𝑛5 + 1

2
𝛿𝑡 and through 95 % during the time step from 𝑡𝑛95 − 1

2
𝛿𝑡 to 

𝑡𝑛95 + 1

2
𝛿𝑡, the times 𝑇5% and 𝑇95% can be obtained by interpolation using 

𝑇5% = 𝑡𝑛5 −
1

2
𝛿𝑡  + δ𝑡 

0.05𝐹(𝛥𝑡) − 𝐹(𝑡𝑛5 − 1
2
𝛿𝑡 )

𝐹(𝑡𝑛5 + 1
2
𝛿𝑡 ) − 𝐹(𝑡𝑛5 − 1

2
𝛿𝑡 )

 

𝑇95% = 𝑡𝑛95 −
1

2
𝛿𝑡 + δ𝑡 

0.95𝐹(Δ𝑡) − 𝐹(𝑡𝑛95 − 1
2
𝛿𝑡)

𝐹(𝑡𝑛95 + 1
2
𝛿𝑡) − 𝐹(𝑡𝑛95 − 1

2
𝛿𝑡)

 

𝜏90% ≈ 𝜐90%  = 𝑇95% − 𝑇5% 
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 4.4 Mean-square field quantity (full window) 

4.4.1 Continuum representation 

For a continuous sound, the mean-square value of the field quantity is defined as 

𝑥2̅̅ ̅ ≡
1

Δ𝑡
∫ 𝑥2

Δ𝑡

0

d𝑡. 

This quantity is related to the time-integrated squared field quantity via 

𝑥2̅̅ ̅ =
𝐸(Δ𝑡)

Δ𝑡
. 

4.4.2 Discrete representation 

The mean-square value of the discrete representation is 

𝑦2̅̅ ̅ ≡
1

Δ𝑡
∫ 𝑦2

Δ𝑡

0

d𝑡 =
1

𝑁
∑ 𝑥𝑛

2
𝑁

𝑛=1
. 

Alternatively, this quantity can be calculated from the time-integrated quantity 𝐹(Δ𝑡) via 

𝑥2̅̅ ̅ ≈ 𝑦2̅̅ ̅ =
𝐹(Δ𝑡)

Δ𝑡
. 

4.5 Band-averaged energy spectral density (BESD) 

4.5.1 Continuum representation 

The energy spectral density can be calculated using a Fourier transform (see 

Sec.5.1), and the band-averaged energy spectral density (BESD) is then the value 

of this energy spectral density averaged across a specified frequency band.  It is 

also possible to calculate the BESD without a Fourier transform because of its 

relation to the time-integrated squared field variable, as expressed by the 

continuous form of Parseval’s theorem (also known as Plancherel’s theorem) 

∫ 𝑥(𝑡)2

∞

−∞

d𝑡 = ∫|𝑋(𝑓)|2

∞

−∞

d𝑓. 

Because 𝑥(𝑡) has a finite duration Δ𝑡, the left-hand side is equal to the time-

integrated squared field quantity, 𝐸(Δ𝑡)  which is equal to 𝑥2̅̅ ̅ multiplied by the 

duration Δ𝑡.  

For a signal of finite bandwidth Δ𝑓, the BESD is: 

𝐸𝑓
̅̅ ̅ =

𝐸(Δ𝑡)

Δ𝑓
. 
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 4.5.2 Discrete representation 

For the discrete representation, similar considerations give (for a signal of finite 

duration Δ𝑡 and finite bandwidth Δ𝑓) 

𝐸𝑓
̅̅ ̅ ≈ 𝐹𝑓̅ =

𝐹(Δ𝑡)

Δ𝑓
. 

4.6 Weighted band-averaged energy spectral density (WBESD) 

4.6.1 Continuum representation 

The weighted sound exposure (𝐸w) is defined in terms of 𝑝w(𝑡), which is not defined 

for (e.g.) M-weighting or NOAA weighting. However, using Plancherel’s theorem in 

the form 

∫ 𝐸𝑓,w

∞

0

(𝑓)d𝑓 = 2 ∫ |𝑃w(𝑓)|2

∞

0

d𝑓 

it follows that  

𝐸𝑓,w(𝑓) = 2|𝑃w(𝑓)|2. 

The definition of the auditory weighting function 𝑤aud(𝑓) (ISO, 2017) implies 

|𝑃w(𝑓)|2 = 𝑤aud(𝑓)|𝑃(𝑓)|2, 

and therefore  

𝐸𝑓,w(𝑓) = 𝑤aud(𝑓)𝐸𝑓(𝑓). 

Approximating 𝐸𝑓(𝑓) by its band-averaged value gives 

𝐸𝑓,w(𝑓) ≈ 𝑤aud(𝑓)𝐸𝑓
̅̅ ̅ 

𝐸𝑓
̅̅ ̅ =

1

Δ𝑓
∫ 𝐸𝑓(𝑓) d𝑓

𝑓max

𝑓min

 

and therefore 

𝐸𝑓,w
̅̅ ̅̅ ̅ ≈ 𝑤aud̅̅ ̅̅ ̅̅ 𝐸𝑓

̅̅ ̅, 

where 𝑤aud̅̅ ̅̅ ̅̅  is the average value of 𝑤aud(𝑓) in the frequency band 

𝑤aud̅̅ ̅̅ ̅̅ =
1

Δ𝑓
∫ 𝑤aud(𝑓) d𝑓

𝑓max

𝑓min

 

If 𝑤aud(𝑓) can be approximated as a linear function of frequency then  

𝑤aud̅̅ ̅̅ ̅̅ ≈
𝑤aud(𝑓min) + 𝑤aud(𝑓max)

2
. 
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 4.6.2 Discrete representation 

The same approximations can be applied to the corresponding discrete quantities 

𝐸𝑓,w
̅̅ ̅̅ ̅ ≈ 𝐹𝑓,w

̅̅ ̅̅ ̅ ≈ 𝑤aud̅̅ ̅̅ ̅̅ 𝐹𝑓̅ . 

 

4.7 Band-averaged power spectral density (BPSD) 

4.7.1 Continuum representation 

As with the BESD, the BPSD can be calculated using a Fourier transform (see Sec. 

5.3).  It is also possible to calculate the BPSD from the BESD by relating it the 

duration of the signal  

𝑃𝑓̅ =
(𝐸̅)𝑓

Δt
=

1

Δt

𝐸(Δ𝑡)

Δ𝑓
=

 𝑥2̅̅ ̅

Δ𝑓
. 

4.7.2 Discrete representation 

For the discrete representation, similar considerations give 

𝑃𝑓̅ ≈ 𝑄𝑓
̅̅̅̅ =

(𝐹̅)𝑓

Δt
=

1

Δt

𝐹(Δ𝑡)

Δ𝑓
=

 𝑦2̅̅ ̅

Δ𝑓
. 

4.8 Impulse 

4.8.1 Continuum representation 

The ‘pressure impulse’ is defined (ISO (2017), entry 3.1.5.2) as the integral of a 

transient sound pressure over time. By analogy, a generalized impulse can be 

defined for a field quantity 𝑥(𝑡) (defined between times 0 and Δ𝑡) via 

𝐽𝑥 = ∫ 𝑥

∆𝑡

0

d𝑡 

4.8.2 Discrete representation 

In the discrete representation, the impulse is defined as the integral over the 

stepwise representation of the field quantity 

𝐽𝑦 = ∫ 𝑦

∆𝑡

0

d𝑡 

𝐽𝑥 ≈ 𝐽𝑦 = δ𝑡 ∑ 𝑦𝑛

𝑁

𝑛=1
 

 

 

 

 

 



 

 

TNO report | TNO 2017 R10022  18 / 39  

 5 Metrics requiring or involving a Fourier transform 

The purpose of this section is to specify the calculation of various statistics or 

metrics from a continuous function of time, 𝑥(𝑡), sampled at uniform intervals 𝛿𝑡. 

The metrics considered in this section are of two kinds: those requiring a Fourier 

transform for their evaluation and those whose calculation from the sampled and 

time-windowed series 𝑥𝑛 might be improved by the use of a Fourier transform. 

 

The Fourier transform is widely used for calculating the spectral density. Metrics 

involving a spectral density are considered below. 

5.1 Fourier energy spectral density (FESD) 

A high resolution spectral density can be computed by means of a Fourier 

transform. 

5.1.1 Continuum representation 

 

We begin with the definition of the Fourier transform (ISO, 2009) 

𝑋(𝑓) = ∫ 𝑥(𝑡) exp(−2πi𝑓𝑡) d𝑡

+∞

−∞

. 

In Section 4 𝑥(𝑡) was defined as being zero outside the ranges of times between 0 

and Δ𝑡 so that  

𝑋(𝑓) = ∫ 𝑥(𝑡) exp(−2πi𝑓𝑡) d𝑡

Δ𝑡

0

. 

According to Plancherel’s theorem 

∫ 𝑥2

+∞

−∞

d𝑡 = ∫ |𝑋(𝑓)|2

+∞

−∞

d𝑓. 

Since 𝑥(𝑡) is a real function, its Fourier transform is symmetric around the zero-

frequency and the integral need consider only positive frequencies 

∫ 𝑥2

Δ𝑡

0

d𝑡 = 2 ∫ |𝑋(𝑓)|2

+∞

0

d𝑓. 

So that the Fourier (energy) spectral density at frequency 𝑓 is 

𝐸𝑓(𝑓) = 2|𝑋(𝑓)|2. 

 



 

 

TNO report | TNO 2017 R10022  19 / 39  

 5.1.2 Discrete representation 

In the discrete representation of the Fourier transform, the frequency content is 

sought of a discrete series 𝑥𝑛 with time sampling 𝑡𝑛 = 𝑛 δ𝑡 and a total number of 

samples 𝑁 = Δ𝑡/δ𝑡. The discrete time series yields a discrete series of frequencies, 

𝑓𝑚 where 

𝑓𝑚 =
𝑚

Δ𝑡
=

𝑚

𝑁δ𝑡
 ;            𝑚 = 0, … 𝑁 − 1 

and the discrete Fourier transform of 𝑥𝑛  is a complex series 𝑋𝑚, with 𝑋𝑚 =

conj(𝑋𝑁−𝑚) 

𝑋𝑚 = 𝑋(𝑓𝑚) = δ𝑡 ∑ 𝑥𝑛 exp(−i2π𝑛𝑚/𝑁)

𝑁−1

𝑛=0

 

The multiplication with the sampling interval 𝜹𝒕 is needed to keep the correct 

physical units. 

Note that in the mathematical sciences this interval is often set to 1. 

Note also that most computational implementations of the fast Fourier 

transform set this interval to 1, so that the user must check whether the 

outcome needs to be multiplied with 𝜹𝒕. 

In the time interval Δ𝑡, the time series 𝑥(𝑡𝑛) is represented by the inverse transform  

𝑥(𝑡𝑛) =
1

Δ𝑡
∑ 𝑋𝑚 exp(+i2π𝑛𝑚/𝑁) 

𝑁−1

𝑚=0

 

Under this discrete representation, the Fourier spectral density of 𝑥𝑛 becomes. 

𝐸𝑓(𝑓𝑚) ≈ 𝐹𝑓(𝑓𝑚) = 2|𝑋(𝑓𝑚)|2 

5.2 Weighted Fourier energy spectral density (WFESD) 

The weighted Fourier energy spectral density is obtained by multiplying the 

unweighted spectral density by the auditory frequency weighting function, 𝑤aud(𝑓).  

5.2.1 Continuum representation 

The weighted Fourier energy spectral density is equal to the product of the 

corresponding unweighted quantity with the auditory frequency weighting function, 

𝑤aud(𝑓), i.e., 

𝐸𝑓,w(𝑓) = 2𝑤aud(𝑓)|𝑋(𝑓)|2. 

5.2.2 Discrete representation 

In the discrete representation, the weighting is carried out in the same way: 

𝐸𝑓,w(𝑓𝑚) ≈ 𝐹𝑓,w(𝑓𝑚) = 2𝑤aud(𝑓𝑚)|𝑋(𝑓𝑚)|2. 
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 5.3 Fourier power spectral density (FPSD) 

5.3.1 Continuum representation 

The (time-averaged) FPSD is simply 𝐸𝑓(𝑓) divided by the duration 

𝑃𝑓(𝑓) =
𝐸𝑓(𝑓)

Δ𝑡
=

2|𝑋(𝑓)|2

Δ𝑡
 

5.3.2 Discrete representation 

In the discrete representation, this becomes 

𝑃𝑓(𝑓𝑚) ≈ 𝑄𝑓(𝑓m) =
2|𝑋(𝑓𝑚)|2

Δ𝑡
 

5.4 Band-averaged energy spectral density (BESD) 

5.4.1 Continuum representation 

The BESD is the average FESD in the frequency band of interest, having width Δ𝑓  

The BESD is thus given by 

𝐸𝑓
̅̅ ̅ =

1

Δ𝑓
∫ 2|𝑋(𝑓)|2  d𝑓

𝑓max

𝑓min

.  

The bandwidth Δ𝑓 = 𝑓max − 𝑓min is the width of the band specified in Section 2. This 

can be related to mean-square field quantities as set out in section 4.6. 

5.4.2 Discrete representation 

In the discrete representation, the BESD is the average value of the FESD in the 

signal band. Since the FESDs are a set of discrete values, taking an average is 

simple a case of summing the FESD array and dividing by the number of elements  

𝐸𝑓
̅̅ ̅ ≈ 𝐹𝑓̅ =

1

𝑁
∑ 2|𝑋(𝑓𝑚)|2

𝑁

𝑚=1

 

5.5 Band-averaged power spectral density (BPSD) 

5.5.1 Continuum representation 

The BPSD is the BESD divided by the duration of the signal. 

𝑃𝑓̅ =
𝐸𝑓
̅̅ ̅

Δt
=

1

Δ𝑓Δt
∫ 2|𝑋(𝑓)|2  d𝑓

𝑓max

𝑓min

. 

5.5.2 Discrete representation 

In the discrete representation, the BPSD is  
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𝑃𝑓̅ ≈ 𝑄𝑓
̅̅̅̅ =

𝐹𝑓̅

Δt
=

1

𝑁∆𝑡
∑ 2|𝑋(𝑓𝑚)|2

𝑁−1

𝑚=0

. 

5.6 Other metrics 

The Fourier representation of 𝑥𝑛 may be used to recover some metrics (especially 

the peak value) more accurately than might be achieved directly from 𝑥𝑛  itself.  

 

If the sampling interval is sufficient to sample the highest-frequency components at 

least twice per period, the sampled version, 𝑥𝑛 is not aliased but discretization-

related concerns remain, particularly in the calculations of metrics related to peak 

values. The Fourier components of 𝑥𝑛 may be used to produce a new time series 

with a time-sampling that is less than 𝛿𝑡. It is likely that this densely sampled time 

series may have a peak value greater than the maximum value of 𝑥𝑛. This can be 

visualized by considering a simple sine wave sampled three times each full 

oscillation. The three samples are enough to determine the amplitude and period of 

the wave but they do not necessarily include a sample of the wave when it is at its 

peak value. If the deduced amplitude and period are then used to construct a signal 

with (say) one hundred times the sampling frequency, the resulting wave will have a 

maximum value close to the deduced amplitude and consequently higher than any 

of the original samples. This approach becomes more relevant for values of 

sampling time that are large relative to the period of the signal.  

 

Improved estimates of peak-related metrics can be obtained by producing a time 

series 𝑥(𝑡), with a sampling frequency exceeding the Nyquist rate by a factor of 10 

or more. This densely sampled time series contains the same Fourier components 

as 𝑥𝑛 and the extra temporal resolution allows more accurate determination of peak 

values.  
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 6 Guidance for calculating specific metrics 

In this section we provide a recipe for calculating specific terms of interest. 
Section 6.1 presents a prescription for the calculation of weighted quantities.  This 
is followed by a description of calculation methods for the cases of single transients 
(Sec. 6.2), multiple transients (Sec. 6.3) and continuous sounds (Sec. 6.4). 

6.1 Evaluation of weighted broadband quantities from WBESD or WFESD  

The details for evaluation of weighted broadband quantities depend on whether 

they are to be calculated from WBESD or WFESD.  

6.1.1 Calculation from WBESD  

The total weighted broadband sound exposure can be calculated by adding 

contributions from each sub-band 𝑖 of width (Δ𝑓)𝑖, i.e., 

𝐸w = ∑(Δ𝑓)𝑖( 𝐹𝑓,w
̅̅ ̅̅ ̅)

𝑖

𝑀

𝑖=1

, 

where the sum over 𝑖  runs over all sub-bands of interest, and each frequency band 

runs from 𝑓min to 𝑓max such that 

(Δ𝑓)𝑖 = (𝑓max)𝑖 − (𝑓min)𝑖 . 

 

6.1.2 Calculation from WFESD  

Alternatively, if the Fourier spectrum is available, the broadband weighted sound 

exposure can be summing the individual Fourier components 

𝐸w = 𝛿𝑓 ∑ (𝐹𝑓,w)
𝑚

𝑁−1

𝑚=0

. 

6.1.3 Example weighting functions 

Early auditory weighting functions (“M-weighting”) for marine mammals were 

introduced in the pioneering work of Southall et al. (2007).  These weighting 

functions are given by 

𝑤aud(𝑓) = 𝐴M𝑅M(𝑓)2, 

where 

𝑅M(𝑓) =
𝑓high

2 𝑓2

(𝑓low
2 + 𝑓2)(𝑓high

2 + 𝑓2)
. 

and 𝐴M is defined in such a way that the maximum value of 𝑤aud(𝑓) is unity.  In 

other words 

𝐴M =
1

max 𝑅M
2. 

The constants 𝑓low and 𝑓high are the frequencies below and above which the 

auditory weighting function deemphasizes contributions relative to those at the flat, 
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 central region of the weighting function (see Figure 2), referred to by Southall et al. 

(2007) as the lower and upper functional hearing limits. 

The values specified by Southall et al. (2007) for 𝑓low, 𝑓high and 𝐴M for different 

marine mammal hearing groups are listed in Table 3, and the resulting weighting 

curves are plotted in Figure 2 (upper graph). 

Table 3  Auditory weighting parameters for Southall et al. (2007) M-weighting (pinnipeds in 

water, and cetaceans), including estimated lower and upper functional hearing limits.  

hearing group 𝒂 𝒃 𝒇low

/kHz 

𝒇high

/kHz 

𝑪𝐌/dB 𝑨𝐌 

low-frequency (LF) 

cetaceans 

2 2 0.007 22 0.01 1.001 

mid-frequency (MF) 

cetaceans 

2 2 0.150 160 0.02 1.004 

high-frequency (HF) 

cetaceans 

2 2 0.200 180 0.02 1.005 

pinnipeds in water 

(PW)  

2 2 0.075 75 0.02 1.004 

The constant 𝐶M is the logarithm of the factor 𝐴M, and may be expressed in 

decibels: 

 
𝐶M = 10 lg 𝐴M  dB. 

The numerical value of 𝐶M is small because 𝐴M is close to unity, which in turn is a 

consequence of the values of 𝑓high being large compared with 𝑓low for all hearing 

groups.  The parameters 𝑎 and 𝑏 are explained later. 

The symbol ‘lg’ is used to mean ‘log10’, here and throughout this report. 
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Figure 2  Auditory frequency weighting functions waud(f) corresponding to (upper) M-weighting 

(Southall et al., 2007); and (lower) current NOAA guidance (NMFS, 2016). The 

abbreviations are explained in Table 3 (or Table 4). 
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 The M-weighting function 𝑀(𝑓) defined by Southall et al. (2007) is related to the 

auditory frequency weighting function 𝑤aud(𝑓) according to 

𝑀(𝑓) = 10 lg 𝑤aud(𝑓) dB, 

from which it follows that an alternative way of expressing the auditory frequency 

weighting function, in logarithmic form, is 

𝑀(𝑓) = 𝐶M + 10 lg 𝑅M(𝑓)2  dB. 

This last equation corresponds to Equation 7 from Southall et al. (2007) (p500). 

A second important source of guidance on the choice of suitable weighting 

functions is the NOAA guidance published in July 2016 (NMFS, 2016), describes a 

generalization of M-weighting of the form 

𝑤aud(𝑓) = 𝐴N𝑅N(𝑓)2, 

where 

𝑅N(𝑓) =
𝑓high

𝑏  𝑓𝑎

(𝑓low
2 + 𝑓2)

𝑎/2
(𝑓high

2 + 𝑓2)
𝑏/2

. 

As with M-weighting, the constant 𝐴N is defined in such a way that the maximum 

value of 𝑤aud(𝑓) is unity.  In other words 

𝐴N =
1

max 𝑅N
2. 

The logarithmic weighting function 𝑊(𝑓) defined by NMFS (2016), here denoted 

𝑁(𝑓), is related to the auditory frequency weighting function 𝑤aud(𝑓) according to 

𝑁(𝑓) = 10 lg 𝑤aud(𝑓) dB, 

from which it follows that 

𝑁(𝑓) = 𝐶N + 10 lg 𝑅N(𝑓)2 dB, 

corresponds to Equation 1 from NMFS (2016), p16. 

𝑀(𝑓) and 𝑁(𝑓) are both examples of the logarithmic auditory frequency weighting 

function 𝑊aud(𝑓), related to the corresponding linear auditory frequency weighting 

function 𝑤aud(𝑓) according to 

𝑊aud(𝑓) = 10 lg 𝑤aud(𝑓) dB, 

Southall M-weighting is a special case of the NMFS (2016) weighting, with 𝑎 = 𝑏 =
2.  The values of 𝑓low and 𝑓high (denoted 𝑓1 and 𝑓2 in NMFS (2016); see Table 3) for 

the NMFS (2016) are repeated here. 

The values specified by Southall et al. (2007) for 𝑓low , 𝑓high and 𝐴M for different 

marine mammal hearing groups are listed in Table 4, and the resulting weighting 

curves are plotted in Figure 2 (lower graph).  The abbreviations “PP” and “OP” are 
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 used instead of “PW” and “OW” (from NMFS, 2016) to mean “phocid pinnipeds 

(underwater)” and “otariid pinnipeds (underwater)”, respectively. 

Table 4  Auditory weighting parameters for NMFS (2016) weighting (pinnipeds and otariids in 

water, and cetaceans), including estimated lower and upper functional hearing limits.  

hearing group 𝒂 𝒃 𝒇low/kHz 𝒇high/kHz 𝑪𝐍/dB 𝑨𝐍 

low-frequency (LF) 

cetaceans 

1.0 2.0 0.20 19 0.13 1.030 

mid-frequency (MF) 

cetaceans 

1.6 2.0 8.80 110 1.20 1.317 

high-frequency (HF) 

cetaceans 

1.8 2.0 12.00 140 1.36 1.367 

phocid pinnipeds 

(PP) (underwater) 

1.0 2.0 1.90 30 0.75 1.189 

otariid pinnipeds 

(OP) (underwater) 

2.0 2.0 0.94 25 0.64 1.159 
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 6.2 Quantities derived from sound pressure or particle motion for a single 

transient 

In the following we present recipes for quantities corresponding to a single transient 

sound, first for quantities based on sound pressure (Table 5) and then on particle 

motion (Table 6, Table 7 and Table 8), excluding those that require a Fourier 

transform. Quantities that require a Fourier transform are included in Table 9. In 

Table 5 and throughout, the symbol ‘lg' is used to indicate a base 10 logarithm 

(log10).  We make no further distinction between discrete and continuous quantities. 

In all cases, discrete quantities are used to approximate continuous ones. 

Table 5  Quantities not requiring a Fourier transform derived from sound pressure for a single 

transient. Some terms are relevant to the signal and some to the noise (sound without 

signal). The signal sample duration (Δ𝑡S) should be large enough to contain the entire 

transient signal and small enough to be uncontaminated by noise (such that the time-

integrated squared noise sound pressure is small compared with the signal sound 

pressure exposure). The noise sample duration (Δ𝑡N) should be approximately equal 

to the signal sample duration. Both signal and noise sample durations shall be 

specified. Reference values are 𝑝0 = 1 μPa (one micropascal), 𝑓0 = 1 Hz, 𝑡0 = 1 s.   

quantity symbol sec. field quantity 

𝒙(𝒕) 

 

sample 

duration 

(𝚫𝒕) 

corresponding 

level (and 

common 

abbreviation) 

band-averaged mean-

square noise sound 

pressure spectral 

density (BPSD) 

 

𝑃𝑓,N
̅̅ ̅̅ ̅ 

 

4.7.2 

or 

5.5.2 

noise sound 

pressure 

Δ𝑡N 
10 lg

𝑃𝑓,N
̅̅ ̅̅ ̅

𝑝0
2

𝑓0

 dB 

 

mean-square noise 

sound pressure  

𝑝N
2̅̅ ̅ 4.4.2 noise sound 

pressure 

Δ𝑡N 
10 lg

𝑝N
2̅̅ ̅

𝑝0
2  dB 

(SPL) 

band-averaged signal 

sound pressure 

exposure spectral 

density (BESD) 

 

𝐸𝑓,S
̅̅ ̅̅ ̅ 

 

4.5.2 

or 

5.4.2 

signal sound 

pressure 

Δ𝑡S 
10 lg

𝐸𝑓,S
̅̅ ̅̅ ̅

𝑝0
2𝑡0/𝑓0

 dB 

 

signal sound pressure 

exposure  

 

𝐸S 

4.1.2 signal sound 

pressure 

Δ𝑡S 
10 lg

𝐸S

𝑝0
2𝑡0

 dB 

(SELss)1   

signal sound pressure 

duration  

𝜏90%,𝑝 4.3.2 signal sound 

pressure 

Δ𝑡S n/a 

band-averaged mean-

square signal sound 

pressure spectral 

density (BPSD) 

𝑃𝑓,S
̅̅ ̅̅ ̅ 

 

 

4.7.2 

or 

5.5.2 

signal sound 

pressure 

Δ𝑡S 

 

 

10 lg
𝑃𝑓,S
̅̅ ̅̅ ̅

𝑝0
2

𝑓0

 dB 

mean-square signal 

sound pressure (full 

time window) 

𝑝S
2̅̅ ̅ 4.4.2 

 

signal sound 

pressure 

Δ𝑡S 

 10 lg
𝑝S

2̅̅ ̅

𝑝0
2  dB 

(SPL) 

                                                      
1 SELss is always the SEL corresponding to 100 % of the sound exposure in a single transient 

signal, and not 90 % or some other fraction.  If E90 is the sound exposure for 90 % of the total 

transient energy, then SELss is the level of E90/0.9. 
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 quantity symbol sec. field quantity 

𝒙(𝒕) 

 

sample 

duration 

(𝚫𝒕) 

corresponding 

level (and 

common 

abbreviation) 

mean-square signal 

sound pressure (90 % 

energy time window) 

𝑝S
2̅̅ ̅ 4.4.2 

 

signal sound 

pressure 

𝜏90%,𝑝 

 10 lg
𝑝S

2̅̅ ̅

𝑝0
2  dB 

(SPL) 

signal pressure impulse 𝐽𝑝 4.8.2 signal sound 

pressure 

Δ𝑡S n/a 

zero-to-peak signal 

sound pressure 

𝑝0−pk,S  4.2.2 signal sound 

pressure 

Δ𝑡S 
10 lg

𝑝0−pk,S
2

𝑝0
2  dB 

(PK, Lpk,flat) 

zero-to-peak signal 

sound pressure to pulse 

duration ratio 

n/a 𝑝0−pk,S

𝜏90%,𝑝

 n/a Δ𝑡S n/a 

 

The final entry in Table 5 is the peak to duration ratio introduced in the draft NOAA 

guidelines of July 2015 (NMFS, 2015). This quantity is not required by NMFS 

(2016) and is unlikely to be of interest for future work. It is included here for 

completeness, in case there is a need for an ongoing project to be compliant with 

NMFS (2015). 

 

Table 6  Quantities not requiring a Fourier transform derived from the magnitude of the sound 

particle displacement for a single transient. Some terms are relevant to the signal and 

some to the noise (sound without signal). The signal sample duration (Δ𝑡S) should be 

large enough to contain the entire transient signal and small enough to be 

uncontaminated by noise). The noise sample duration (Δ𝑡N) should be approximately 

equal to the signal sample duration. Both signal and noise sample durations shall be 

specified. Reference values are 𝛿0 = 1 pm (one picometre), 𝑓0 = 1 Hz, 𝑡0 = 1 s.   

quantity symbol sec. field quantity 

𝒙(𝒕) 

sample 

duration 

(𝚫𝒕) 

corresponding 

level  

band-averaged mean-

square noise sound 

particle displacement 

spectral density (BPSD) 

 

𝑃𝛿,𝑓,N
̅̅ ̅̅ ̅̅ ̅ 

 

4.7.2  magnitude of 

noise sound 

particle 

displacement 

Δ𝑡N 
10 lg

𝑃𝛿,𝑓,N
̅̅ ̅̅ ̅̅ ̅

𝛿0
2

𝑓0

 dB 

 

mean-square noise 

sound particle 

displacement 

𝛿N
2̅̅ ̅ 4.4.2 magnitude of 

noise sound 

particle 

displacement 

Δ𝑡N 
10 lg

𝛿N
2̅̅ ̅

𝛿0
2  dB 

band-averaged signal 

sound particle 

displacement exposure 

spectral density (BESD) 

 

𝐸𝛿,𝑓,S
̅̅ ̅̅ ̅̅ ̅ 

 

4.5.2  magnitude of 

signal sound 

particle 

displacement 

Δ𝑡S 
10 lg

𝐸𝛿,𝑓,S
̅̅ ̅̅ ̅̅ ̅

𝛿0
2𝑡0/𝑓0

 dB 

 

signal sound particle 

displacement exposure  

 

𝐸𝛿,S 
4.1.2 magnitude of 

signal sound 

particle 

displacement 

Δ𝑡S 
10 lg

𝐸𝛿,S

𝛿0
2𝑡0

 dB 

signal sound particle 

displacement duration  

𝜏90%,𝛿  4.3.2 magnitude of 

signal sound 

Δ𝑡S n/a 
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 quantity symbol sec. field quantity 

𝒙(𝒕) 

sample 

duration 

(𝚫𝒕) 

corresponding 

level  

particle 

displacement 

band -averaged mean-

square signal sound 

particle displacement 

spectral density (BPSD) 

𝑃𝛿,𝑓,S
̅̅ ̅̅ ̅̅  

 

 

4.7.2  magnitude of 

signal sound 

particle 

displacement 

Δ𝑡S 

 

 

10 lg
𝑃𝛿,𝑓,S
̅̅ ̅̅ ̅̅

𝛿0
2

𝑓0

 dB 

mean-square signal 

sound particle 

displacement (full time 

window) 

𝛿S
2̅̅ ̅ 4.4.2 

 

magnitude of 

signal sound 

particle 

displacement 

Δ𝑡S 

 10 lg
𝛿S

2̅̅ ̅

𝛿0
2  dB 

mean-square signal 

sound particle 

displacement (90 % 

energy time window) 

𝛿S
2̅̅ ̅ 4.4.2 

 

magnitude of 

signal sound 

particle 

displacement 

𝜏90%,𝛿  

 10 lg
𝛿S

2̅̅ ̅

𝛿0
2  dB 

zero-to-peak signal 

sound particle 

displacement 

𝛿0−pk,S  4.2.2 magnitude of 

signal sound 

particle 

displacement 

Δ𝑡S 
10 lg

𝛿0−pk,S
2

𝛿0
2  dB 

 

Table 7  Quantities not requiring a Fourier transform derived from the magnitude of the sound 

particle velocity for a single transient. Some terms are relevant to the signal and some 

to the noise (sound without signal). The signal sample duration (Δ𝑡S) should be large 

enough to contain the entire transient signal and small enough to be uncontaminated 

by noise). The noise sample duration (Δ𝑡N) should be approximately equal to the 

signal sample duration. Both signal and noise sample durations shall be specified. 

Reference values are 𝑢0 = 1 nm/s (one nanometre per second), 𝑓0 = 1 Hz, 𝑡0 = 1 s.   

quantity symbol sec. field quantity 

𝒙(𝒕) 

sample 

duration 

(𝚫𝒕) 

corresponding 

level  

band-averaged mean-

square noise sound 

particle velocity spectral 

density (BPSD) 

 

𝑄𝑢,𝑓,N
̅̅ ̅̅ ̅̅ ̅ 

 

4.7.2  magnitude of 

noise sound 

particle 

velocity 

Δ𝑡N 
10 lg

𝑄𝑢,𝑓,N
̅̅ ̅̅ ̅̅ ̅

𝑢0
2

𝑓0

 dB 

 

mean-square noise 

sound particle velocity 

𝑢N
2̅̅̅̅  4.4.2 magnitude of 

noise sound 

particle 

velocity 

Δ𝑡N 
10 lg

𝑢N
2̅̅̅̅

𝑢0
2  dB 

band-averaged signal 

sound particle velocity 

exposure spectral 

density (BESD) 

 

𝐸𝑓,S
̅̅ ̅̅ ̅ 

4.5.2  magnitude of 

signal sound 

particle 

velocity 

Δ𝑡S 
10 lg

𝐸𝑓,S
̅̅ ̅̅ ̅

𝑢0
2𝑡0

𝑓0

 dB 

 

signal sound particle 

velocity exposure  

 

𝐸𝑢,S 
4.1.2 magnitude of 

signal sound 

particle 

velocity 

Δ𝑡S 
10 lg

𝐸𝑢,S

𝑢0
2𝑡0

 

 dB 

signal sound particle 

velocity duration  

𝜏90%,𝑢 4.3.2 magnitude of 

signal sound 

Δ𝑡S n/a 
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 quantity symbol sec. field quantity 

𝒙(𝒕) 

sample 

duration 

(𝚫𝒕) 

corresponding 

level  

particle 

velocity 

band-averaged mean-

square signal sound 

particle velocity spectral 

density (BPSD) 

𝑃𝑢,𝑓,S
̅̅ ̅̅ ̅̅ ̅ 

 

 

4.7.2  magnitude of 

signal sound 

particle 

velocity 

Δ𝑡S 

 

 

10 lg
𝑃𝑢,𝑓,S
̅̅ ̅̅ ̅̅ ̅

𝑢0
2

𝑓0

 dB 

mean-square signal 

sound particle velocity 

(full time window) 

𝑢S
2̅̅ ̅ 4.4.2 

 

magnitude of 

signal sound 

particle 

velocity 

Δ𝑡S 

 10 lg
𝑢S

2̅̅ ̅

𝑢0
2  dB 

mean-square signal 

sound particle velocity 

(90 % energy time 

window) 

𝑢S
2̅̅ ̅ 4.4.2 

 

magnitude of 

signal sound 

particle 

velocity 

𝜏90%,𝑢 

 10 lg
𝑢S

2̅̅ ̅

𝑢0
2  dB 

zero-to-peak signal 

sound particle velocity 

𝑢0−pk,S  4.2.2 magnitude of 

signal sound 

particle 

velocity 

Δ𝑡S 
10 lg

𝑢0−pk,S
2

𝑢0
2  dB 

 

Table 8  Quantities not requiring a Fourier transform derived from the magnitude of the sound 

particle acceleration for a single transient. Some terms are relevant to the signal and 

some to the noise (sound without signal). The signal sample duration (Δ𝑡S) should be 

large enough to contain the entire transient signal and small enough to be 

uncontaminated by noise). The noise sample duration (Δ𝑡N) should be approximately 

equal to the signal sample duration. Both signal and noise sample durations shall be 

specified. Reference values are 𝑎0 = 1 μm/s2 (one micrometre per second squared), 

𝑓0 = 1 Hz, 𝑡0 = 1 s.   

quantity symbol sec. field quantity 

𝒙(𝒕) 

sample 

duration 

(𝚫𝒕) 

corresponding 

level  

band-averaged mean-

square noise sound 

particle acceleration 

spectral density (BPSD) 

 

𝑃𝑎,𝑓,N
̅̅ ̅̅ ̅̅ ̅ 

 

4.7.2  magnitude of 

noise sound 

particle 

acceleration 

Δ𝑡N 
10 lg

𝑃𝑎,𝑓,N
̅̅ ̅̅ ̅̅ ̅

𝑎0
2

𝑓0

 dB 

 

mean-square noise 

sound particle 

acceleration 

𝑎N
2̅̅̅̅  4.4.2 magnitude of 

noise sound 

particle 

acceleration 

Δ𝑡N 
10 lg

𝑎N
2̅̅̅̅

𝑎0
2  dB 

band-averaged signal 

sound particle 

acceleration exposure 

spectral density (BESD) 

 

𝐸𝑎,𝑓,S
̅̅ ̅̅ ̅̅ ̅ 

 

4.5.2  magnitude of 

signal sound 

particle 

acceleration 

Δ𝑡S 
10 lg

𝐸𝑎,𝑓,S
̅̅ ̅̅ ̅̅ ̅

𝑎0
2𝑡0

𝑓0

 dB 

 

signal sound particle 

acceleration exposure  

 

𝐸𝑎,S 
4.1.2 magnitude of 

signal sound 

particle 

acceleration 

Δ𝑡S 
10 lg

𝐸𝑎,S

𝑎0
2𝑡0

 dB 

signal sound particle 

acceleration duration  

𝜏90%,𝑎 4.3.2 magnitude of 

signal sound 

Δ𝑡S n/a 
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 quantity symbol sec. field quantity 

𝒙(𝒕) 

sample 

duration 

(𝚫𝒕) 

corresponding 

level  

particle 

acceleration 

band-averaged mean-

square signal sound 

particle acceleration 

spectral density (BPSD) 

𝑃𝑎,𝑓,S
̅̅ ̅̅ ̅̅ ̅ 

 

 

4.7.2  magnitude of 

signal sound 

particle 

acceleration 

Δ𝑡S 

 
10 lg

𝑃𝑎,𝑓,S
̅̅ ̅̅ ̅̅ ̅

𝑎0
2

𝑓0

 dB 

 

mean-square signal 

sound particle 

acceleration (full time 

window) 

𝑎S
2̅̅ ̅ 4.4.2 

 

magnitude of 

signal sound 

particle 

acceleration 

Δ𝑡S 

 10 lg
𝑎S

2̅̅ ̅

𝑎0
2  dB 

mean-square signal 

sound particle 

acceleration (90 % 

energy time window) 

𝑎S
2̅̅ ̅ 4.4.2 

 

magnitude of 

signal sound 

particle 

acceleration 

𝜏90%,𝑎 

 10 lg
𝑎S

2̅̅ ̅

𝑎0
2  dB 

zero-to-peak signal 

sound particle 

acceleration 

𝑎0−pk,S  4.2.2 magnitude of 

signal sound 

particle 

acceleration 

Δ𝑡S 
10 lg

𝑎0−pk,S
2

𝑎0
2  dB 

 

Table 9  Quantities requiring a Fourier transform for a single transient. Some terms are relevant 

to the signal and some to the noise (sound without signal). The signal sample duration 

(Δ𝑡S) should be large enough to contain the entire transient signal and small enough to 

be uncontaminated by noise). The noise sample duration (Δ𝑡N) should be 

approximately equal to the signal sample duration. Both signal and noise sample 

durations shall be specified. Reference values are 𝑝0 = 1 μPa, 𝛿0 = 1 pm, 𝑢0 = 1 nm/s, 

𝑎0 = 1 μm/s2, 𝑓0 = 1 Hz, 𝑡0 = 1 s.   

quantity symbol sec. 

 

field quantity 𝒙(𝒕) sample 

duration 

(𝚫𝒕) 

corresponding 

level  

Fourier mean-square 

noise sound pressure 

spectral density (FPSD) 

 

𝑃𝑝,𝑓,N 
5.3.2 noise sound 

pressure 

Δ𝑡N 
10 lg

𝑃𝑝,𝑓,N

𝑝0
2

𝑓0

 dB 

Fourier mean-square 

noise sound particle 

displacement spectral 

density (FPSD) 

 

𝑃𝛿,𝑓,N 
5.3.2 specified 

component of 

noise sound 

particle 

displacement 

Δ𝑡N 
10 lg

𝑃𝛿,𝑓,N

𝛿0
2

𝑓0

 dB 

 

Fourier mean-square 

noise sound particle 

velocity spectral density 

(FPSD) 

 

𝑃𝑢,𝑓,N 
5.3.2 specified 

component of 

noise sound 

particle velocity 

Δ𝑡N 
10 lg

𝑃𝑢,𝑓,N

𝑢0
2

𝑓0

 dB 

 

Fourier mean-square 

noise sound particle 

acceleration spectral 

density (FPSD) 

 

𝑃𝑎,𝑓,N 
5.3.2 specified 

component of 

noise sound 

particle 

acceleration 

Δ𝑡N 
10 lg

𝑃𝑎,𝑓,N

𝑎0
2

𝑓0

 dB 
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 quantity symbol sec. 

 

field quantity 𝒙(𝒕) sample 

duration 

(𝚫𝒕) 

corresponding 

level  

signal Fourier sound 

pressure exposure 

spectral density (FESD)  

 

𝐸𝑝,𝑓,S 
5.1.2 signal sound 

pressure 

Δ𝑡S 
10 lg

𝐸𝑝,𝑓,S

𝑝0
2𝑡0

𝑓0

 dB 

signal Fourier sound 

particle displacement 

exposure spectral 

density (FESD)  

 

𝐸𝛿,𝑓,S 
5.1.2 specified 

component of 

signal sound 

particle 

displacement 

Δ𝑡S 
10 lg

𝐸𝛿,𝑓,S

𝛿0
2𝑡0

𝑓0

 dB 

 

signal Fourier sound 

particle velocity 

exposure spectral 

density (FESD)  

 

𝐸𝑢,𝑓,S 
5.1.2 specified 

component of 

signal sound 

particle velocity 

Δ𝑡S 
10 lg

𝐸𝑢,𝑓,S

𝑢0
2𝑡0

𝑓0

 dB 

 

signal Fourier sound 

particle acceleration 

exposure spectral 

density (FESD)  

 

𝐸𝑎,𝑓,S 
5.1.2 specified 

component of 

signal sound 

particle 

acceleration 

Δ𝑡S 
10 lg

𝐸𝑎,𝑓,S

𝑎0
2𝑡0

𝑓0

 dB 

 

Fourier mean-square 

signal sound pressure 

spectral density (FPSD) 

 

 

𝑃𝑝,𝑓,S 

5.3.2 signal sound 

pressure 

Δ𝑡S 

 

 

10 lg
𝑃𝑝,𝑓,S

𝑝0
2

𝑓0

 dB 

Fourier mean-square 

signal sound particle 

displacement spectral 

density (FPSD) 

 

 

𝑃𝛿,𝑓,S 

5.3.2 specified 

component of 

signal sound 

particle 

displacement 

Δ𝑡S 

 

 

 

10 lg
𝑃𝛿,𝑓,S

𝛿0
2

𝑓0

 dB 

 

Fourier mean-square 

signal sound particle 

velocity spectral density 

(FPSD) 

 

 

𝑃𝑢,𝑓,S 

5.3.2 specified 

component of 

signal sound 

particle velocity 

Δ𝑡S 

 

 

 

10 lg
𝑃𝑢,𝑓,S

𝑢0
2

𝑓0

 dB 

Fourier mean-square 

signal sound particle 

acceleration spectral 

density (FPSD) 

 

 

𝑃𝑎,𝑓,S 

5.3.2 specified 

component of 

signal sound 

particle 

acceleration 

Δ𝑡S 

 

 

 

10 lg
𝑃𝑎,𝑓,S

𝑎0
2

𝑓0

 dB 
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 6.3 Quantities derived from sound pressure or particle motion for multiple 

transients 

Recipes for quantities corresponding to multiple transients are listed in Table 10. 

Table 10  Quantities derived from sound pressure and particle motion for multiple transients. The 

sample duration (Δ𝑡) is chosen to encompass multiple transients and shall be 

specified. Reference values are 𝑝0 = 1 μPa, 𝛿0 = 1 pm, 𝑢0 = 1 nm/s, 𝑎0 = 1 μm/s2, 

𝑓0 = 1 Hz, 𝑡0 = 1 s.   

quantity symb

ol 

sec. field quantity 

𝒙(𝒕) 

sample 

duration 

(𝚫𝒕) 

corresponding 

level (and common 

abbreviation) 

cumulative sound 

pressure exposure  

𝐸𝑝 4.1.2 sound 

pressure 

Δ𝑡 
10 lg

𝐸𝑝

𝑝0
2𝑡0

 dB 

(SELcum)  

cumulative sound 

particle displacement 

exposure  

𝐸𝛿  4.1.2 magnitude of 

sound 

particle 

displacement 

Δ𝑡 10 lg
𝐸𝛿

𝛿0
2𝑡0

 dB 

cumulative sound 

particle velocity 

exposure  

𝐸𝑢 4.1.2 magnitude of 

sound 

particle 

velocity 

Δ𝑡 10 lg
𝐸𝑢

𝑢0
2𝑡0

 dB 

cumulative sound 

particle acceleration 

exposure  

𝐸𝑎 4.1.2 magnitude of 

sound 

particle 

acceleration 

Δ𝑡 10 lg
𝐸𝑎

𝑎0
2𝑡0

 dB 

 

6.4 Quantities derived from sound pressure or particle motion for continuous 

sound 

Recipes for quantities corresponding to continuous sound follow, first for sound 

pressure (Table 11) and then for particle motion (Table 13 and Table 14). 

 

Table 11  Quantities derived from sound pressure for continuous sound. The sample duration 

(Δ𝑡) shall be specified. Reference values are 𝑝0 = 1 μPa, 𝑓0 = 1 Hz, 𝑡0 = 1 s.   

quantity symbol secti

on 

Field quantity 

𝒙(𝒕) 

Sample 

duration 

(𝚫𝒕) 

corresponding 

level  (and 

common 

abbreviation) 

band-averaged sound 

pressure exposure 

spectral density (BESD) 

 

𝐸𝑓
̅̅ ̅ 

 

4.5.2 

or 

5.4.2 

sound 

pressure 

Δ𝑡 
10 lg

𝐸𝑓
̅̅ ̅

𝑝0
2𝑡0

𝑓0

 dB 

Fourier sound pressure 

exposure spectral 

density (FESD)  

 

𝐸𝑓  
 

5.1.2 

sound 

pressure 

Δ𝑡 
10 lg

𝐸𝑓

𝑝0
2𝑡0

𝑓0

 dB 

sound pressure 

exposure  

 

𝐸 

4.1.2 sound 

pressure 

Δ𝑡 
10 lg

𝐸

𝑝0
2𝑡0

 

 dB 
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 quantity symbol secti

on 

Field quantity 

𝒙(𝒕) 

Sample 

duration 

(𝚫𝒕) 

corresponding 

level  (and 

common 

abbreviation) 

(SEL) 

band-averaged mean-

square sound pressure 

spectral density (BPSD) 

 

𝑃𝑓̅ 

 

4.7.2 

or 

5.5.2 

sound 

pressure 

Δ𝑡 
10 lg

𝑃𝑓̅

𝑝0
2

𝑓0

 dB 

Fourier mean-square 

sound pressure spectral 

density (FPSD) 

 

𝑃𝑓  
5.3.2 sound 

pressure 

Δ𝑡 
10 lg

𝑃𝑓

𝑝0
2

𝑓0

 dB 

mean-square sound 

pressure  

𝑝2̅̅ ̅ 4.4.2 sound 

pressure 

Δ𝑡 
10 lg

𝑝2̅̅ ̅

𝑝0
2  dB 

(SPL) 
 

Table 12  Quantities derived from the magnitude of the sound particle displacement for 

continuous sound. The sample duration (Δ𝑡) shall be specified. Reference values are 

𝛿0 = 1 pm, 𝑓0 = 1 Hz, 𝑡0 = 1 s.   

quantity symbol sec. field quantity 

𝒙(𝒕) 

sample 

duration 

(𝚫𝒕) 

corresponding 

level  

band-averaged sound 

particle displacement 

exposure spectral 

density (BESD) 

 

𝐸𝛿,𝑓
̅̅ ̅̅ ̅ 

 

4.5.2  magnitude of 

sound 

particle 

displacement 

Δ𝑡 
10 lg

𝐸𝛿,𝑓

𝛿0
2𝑡0

𝑓0

 dB 

 

sound particle 

displacement exposure  

 

𝐸𝛿  

4.1.2 magnitude of 

sound 

particle 

displacement 

Δ𝑡 
10 lg

𝐸𝛿

𝛿0
2𝑡0

 

 dB 

band-averaged mean-

square sound particle 

displacement spectral 

density (BPSD) 

 

𝑃𝛿,𝑓
̅̅ ̅̅ ̅ 

 

4.7.2  magnitude of 

sound 

particle 

displacement 

Δ𝑡 
10 lg

𝑃𝛿,𝑓
̅̅ ̅̅ ̅

𝛿0
2

𝑓0

 dB 

 

mean-square sound 

particle displacement 

𝛿 4.4.2 magnitude of 

sound 

particle 

displacement 

Δ𝑡 
10 lg

𝛿2̅̅ ̅

𝛿0
2  dB 
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 Table 13  Quantities derived from the magnitude of the sound particle velocity for continuous 

sound. The sample duration (Δ𝑡) shall be specified. Reference values are 𝑢0 = 1 nm/s, 

𝑓0 = 1 Hz, 𝑡0 = 1 s.   

quantity symbol sec. field quantity 

𝒙(𝒕) 

sample 

duration 

(𝚫𝒕) 

corresponding 

level  

band-averaged sound 

particle velocity 

exposure spectral 

density (BESD) 

 

𝐸𝑢,𝑓
̅̅ ̅̅ ̅ 

 

4.5.2  magnitude of 

sound 

particle 

velocity 

Δ𝑡 
10 lg

𝐸𝑢,𝑓
̅̅ ̅̅ ̅

𝑢0
2𝑡0

𝑓0

 dB 

sound particle velocity 

exposure  

 

𝐸𝑢 

4.1.2 magnitude of 

sound 

particle 

velocity 

Δ𝑡 
10 lg

𝐸𝑢

𝑢0
2𝑡0

 

 dB 

band-averaged mean-

square sound particle 

velocity spectral density 

(BPSD) 

 

𝑃𝑢,𝑓
̅̅ ̅̅ ̅ 

 

4.7.2  magnitude of 

sound 

particle 

velocity 

Δ𝑡 
10 lg

𝑃𝑢,𝑓
̅̅ ̅̅ ̅

𝑢0
2

𝑓0

 dB 

 

mean-square sound 

particle velocity 

𝑢2̅̅ ̅ 4.4.2 magnitude of 

sound 

particle 

velocity  

Δ𝑡 
10 lg

𝑢2̅̅ ̅

𝑢0
2  dB 

 

Table 14  Quantities derived from the magnitude of the sound particle acceleration for 

continuous sound. The sample duration (Δ𝑡) shall be specified. Reference values are 

𝑎0 = 1 pm, 𝑓0 = 1 Hz, 𝑡0 = 1 s.   

quantity symb

ol 

sec. field quantity 

𝒙(𝒕) 

sample 

duration 

(𝚫𝒕) 

corresponding 

level  

band-averaged sound 

particle acceleration 

exposure spectral 

density (BESD) 

 

𝐸𝑎,𝑓
̅̅ ̅̅ ̅ 

 

4.5.2  magnitude of 

sound 

particle 

acceleration 

Δ𝑡 
10 lg

𝐸𝑎,𝑓
̅̅ ̅̅ ̅

𝑎0
2𝑡0

𝑓0

 dB 

 

sound particle 

acceleration exposure  

 

𝐸𝑎  

4.1.2 magnitude of 

sound 

particle 

acceleration 

Δ𝑡 
10 lg

𝐸𝑎

𝑎0
2𝑡0

 dB 

 

band -averaged mean-

square sound particle 

acceleration spectral 

density (BPSD) 

 

𝑃𝑎,𝑓
̅̅ ̅̅ ̅ 

 

4.7.2  magnitude of 

sound 

particle 

acceleration 

Δ𝑡 
10 lg

𝑃𝑎,𝑓
̅̅ ̅̅ ̅

𝑎0
2

𝑓0

 dB 

 

mean-square sound 

particle acceleration 

𝑎2̅̅ ̅ 4.4.2 magnitude of 

sound 

particle 

acceleration 

Δ𝑡 
10 lg

𝑎2̅̅ ̅

𝑎0
2  dB 
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 6.5 Example of zero-to-peak and root-mean square sound pressure 

Figure 3 shows a trace of sound pressure versus time for a simulated underwater 

sound pressure signal.  The labels in the axes show the zero-to-peak and root-

mean-square sound pressures, and the signal duration, as bounded by the five- 

and ninety-five-percentile times for the cumulative sound pressure exposure. Levels 

association with mean-square sound pressure and sound pressure exposure are 

also shown as text in the figure.  

 

 

 

Figure 3  Time-series of pressure (upper panel) and cumulative sound pressure exposure for a 

simulated underwater sound signal. 

The signal shows a strong early peak, followed by lower absolute sound pressure at 

later times. The duration of the pulse – as defined by 𝜏90 – is greater than the 

duration of the main peak because more than 5 % of the signal’s energy lies outside 

that peak. The peak sound pressure is greater than the mean-square sound 

pressure in the 90 % energy window, which is shown square-rooted for comparison 

with the peak.  
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 7 Summary  

The analysis of underwater acoustic data makes use of many descriptors and 

metrics. When data are carefully gathered, avoiding aliasing and clipping and 

including all necessary calibration and normalization factors it is possible to produce 

standard measures that agree with ISO standards. These descriptors allow precise 

comparisons to be made between data from different measurement campaigns 

using different equipment. Such precise comparisons are necessary if accurate 

estimates are to be made of any potential impact of sound on aquatic life.  

 

This report has set out definitions of metrics that can be used to describe signal 

amplitude, frequency-content, duration and energy, and their corresponding levels, 

where relevant. It has outlined procedures by which these metrics can be 

calculated, starting from an observable field quantity such as sound pressure, 

particle displacement, particle velocity or particle acceleration. Although the majority 

of underwater acoustic measurements available to date are of sound pressure, 

equal emphasis is given here on particle motion.  
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